Mathematics

Year 8

Scheme of Learning 2023-2024

Subject leader: K Ellender

Topics by term	Topic overview for Year 8					
	Term 1	Term 2	Term 3	Term 4	Term 5	Term 6
Topics taught	Topic 1/Unit 1. Number Skills 1.a Calculations 1.b Divisibility and division 1.c Calculating with negative integers 1.d Powers and roots 1.e Multiples and factors Knowledge Recall / Quiz Topic 2/Unit 3. Statistics, Graphs and Charts 3.a Pie charts 3.b Using tables 3.c Stem and leaf diagrams Continued in Term 2...	Continued... 3.d Comparing data 3.e Scatter graphs 3.f Misleading graphs Knowledge Recall / Quiz Topic 3/Unit 2. Area and Volume 2.a Area of a triangle 2.b Area of a parallelogram and trapezium 2.c Area of a circle 2.d Volume of cubes and cuboids 2.e 2D rep. of 3D solids 2.f Surface area - cuboids 2.g Measures Knowledge Recall / Quiz	Topic 4/Unit 4. Expressions and equations 4.a Algebraic powers 4.b Expressions and brackets 4.c Factorising expressions 4.d One-step equations 4.e Two-step equations Knowledge Recall / Quiz Topic 5/Unit 5/9. Real life graphs and straight-line graphs 5.a Conversion graphs 5.b Distance-time graphs 5.c Line graphs 5.d Real-life graphs 5.e Curved graphs Continued in Term 4...	Continued... 9.a Sequences 9b. Straight line graphs 9.c Direct proportion on graphs Knowledge Recall / Quiz Topic 6/Unit 6. Decimals 6.a Ordering decimals and rounding 6.b Place Value Calculations 6.c Calculations with decimals 6.d Ratio and proportion with decimals Knowledge Recall / Quiz	Topic 7/Unit 7 Lines and angles 7.a Quadrilaterals 7.b Angles in parallel lines 7.c Exterior and interior angles 7.d Solving geometric problems 7e. Constructions Knowledge Recall / Quiz Topic 8/Unit 8 Calculating with fractions 8.a Ordering fractions 8.b Adding, subtracting 8.c Multiplying, dividing 8.d Mixed numbers Knowledge Recall / Quiz	Topic 9/Unit 10 Percentages, decimals and fractions 10.a Fractions \& decimals 10.b Equivalent proportions 10.c Percentages of amounts Knowledge Recall / Quiz Topic 3/Unit 2. Area and Volume Recap/Revision Recap key topics involving area and volume covered in term 2.

Contents

Term 1 3
Term 2 5
Term 3 7
Term 4. 10
Term 5 12
Term 6 14
Use of Big Questions and Lesson Questions 16
Common Misconceptions Notes 16
KS3 - Command Words 19
General Resources Bank 20
Assessments/ Quizzes 21
Consolidation and Review Activities 21
Homework 22
SMSC/ ICT/ Cross Curricular Connections 22

This symbol indicates that there are aspects of this curriculum area that pupils have previously practised. Pupils will be revisiting earlier content as part of their consolidation or in order to ensure knowledge is secure before expanding into new learning. References to these earlier SOL are noted for teachers to check specific objectives and content. For KS2 identification, please refer to the KS3 SOW and National Curriculum linked document in the shared area.

Pearson's Edexcel KS3							
		Topic area:	Learning objectives / Outcomes All: Sets 1-4 focus Most: Sets 1-3 focus Some: Sets 1-2 focus Examples	Key Terms/ concepts Literacy Numeracy	Assessment and homework tasks	Resources	Personal Development Curriculum links (SMSC, British Values, PSHE)
Term 1							
	Topic 1: Unit 1 - Number (Approximately 4 weeks)						
N2 N3 N4 N6	How do you calculate accurately with positive and negative numbers? 1.a Calculations Use written methods to add and subtract more than two numbers (including decimals). Multiply with accuracy. Use mental calculation for multiplication. Estimate answers to calculations. Understand, choose and use a range of strategies for mental calculations by developing an understanding of relationships between numbers. Ch2 1.b Divisibility and division Know and use divisibility rules. Use a written method to divide decimal numbers by integers. Understand the relationships between divisibility rules and relate to factors and multiples. What other types of numbers can I calculate with? 1.c Calculating with negative integers Add, subtract, multiply and divide positive and negative numbers, including larger numbers and decimals. Extend the 'rules' for calculations with negative numbers to very large numbers and decimal numbers. and roots Yr7 \quadDistinguish between the negative sign and subtract operation.			Add, subtract, multiply, divide, sum, product, total, negative, integer, calculation, square, indices, powers, roots, prime, factor, multiple, LCM, HCF, See command words	Starter quizzes for the term should include: Focused accuracy drills including timetables Required prior knowledge Mixed skills practice Knowledge gap support Look, cover, write, check. Pupils are expected to complete purposeful exercises and repeated practice on: - 4 operations integers, - 4 operations decimals - 4 operations negatives.	- Pearson's Pi2 Ex1 - Pearson's Theta2 Ex1 - Person's Delta2 Ex1 - Support/Core/Extend KS3 book Year 8 Ch1 - Cambridge Essentials 7 support/core NCh3\&4 - KS3 Consistency document Key \& exemplar questions - WRM - Add and Subtract WRM - Multiply and divide WRM - Multiples \& factors WRM - Directed numbers Number skills - textbook generator Question Generators - MathsBot.com Printed directed number lines.	By maintaining high standards of behaviour, including mutual respect and tolerance for different ideas to their own, class teachers will be promoting British values. Throughout the year, students should be encouraged to actively listen to understand the viewpoint of others when learning involves opinions, interpretation of fact and alternative methods Gatsby Benchmarks: Careers \& Personal Finance Use real-life contexts with basic integer and decimal calculations wherever possible in KS3 to help
				- Recall of square and cube numbers - The order of operations - Prime factor decomposition	Manipulatives for directed number support: Number Line (mathsbot.com)	students to engage and relate learning to everyday and working life. Maths, Why Bother? I MYPATH Careers Resources (mypathcareersuk.com)	
				- HCF and LCM Aim for proficiency and ensure written work is of a high quality. Practical problems involving operations in	Directed numbers drills - Directed Number Patterns (mathsbot.com) Manipulatives for prime number representations and multiplication Prime Factor Tiles (mathsbot.com)	Discuss the relevance of Maths skills to develop confidence in monetary calculations and why this is important. This does not need to be a separate defined topic, but should be incorporated within	

		3.c Stem and leaf diagrams	Draw and interpret stem and leaf diagrams Back-to-Back diagrams. Find mode, median and range from stem and leaf diagrams.		information from one graph onto another. Ensure written work is of a high quality and encourage students to SHAPE answers when explaining. Plenary style questions - White Rose Maths - Assessment Papers Maths Box > Topic resources >4 Questions Exit tickets Gatsby Benchmarks: Careers \& Personal Finance Use real-life contexts with graphs and their applications wherever possible in KS3 to help students to engage and relate learning to everyday and working life.	Year 8 Term 2 Knowledge Organiser for key terms, recall and low stakes quizzing. Please see the Resources section for available materials on skills practice and worded style questions for progression and assessment.	Activity 1.1 - Democracy and Law - General Elections British values maths resources Gatsby Benchmarks: Careers \& Personal Finance Use real-life contexts with graphs and their applications wherever possible in KS3 to help students to engage and relate learning to everyday and working life. Discussions relating to the development of analytical industries and data related careers should be encouraged.
Term 2							
	Topic 2: Unit 3	tatistics, Grap	and Charts (Continued for 2 weeks)				
	How do we display and interpret data with graphs and charts?	3.d Comparing data 3.e Scatter graphs	Draw comparisons on two sets of data using statistics or the shape of the graph. Compare two sets of data using averages and range. Draw line graphs to compare two sets of data. Compare two sets of data using the shape of a line graph or pie charts. Understand how to make comparisons between data. Draw scatter graphs. Describe types of correlation. Draw and use a line of best fit on a scatter graph. Deepen understanding of correlation by considering examples where there is weak or no correlation, as well as examples where there is correlation that you might not expect (between two seemingly random quantities). Interpret graphs and charts.	Scatter graph, correlation,, mean, median, mode, range, estimate, average, compare, LOBF, See command words	Pupils are expected to complete purposeful exercises and repeated practice on: - Drawing different graphs and charts. - Finding the mean, median, mode and range Practical problems involving graphs and charts from real life data. Multistep problems in a range of scenarios with	- Pearson's Pi2 Ex3 - Pearson's Theta2 Ex3 - Person's Delta2 Ex4 - Support/Core/Extend KS3 book Year 8 Ch2 - Cambridge Essentials support/core SCh1-2 Key \& exemplar questions WRM - Representing data Pre-printed axis and graphs where appropriate. Compasses, protractors Graph Paper	

Term 3

Assessments for the year group will take place in Week 3 of each term, followed by feedback and focussed Pupil Improvement Time.

Term 4						
	Topic 5: Unit 5/9-Real-life graphs and Straight-line graphs (Continued for 2 weeks)					
$\begin{aligned} & \text { A9, A10, } \\ & \text { A14 } \end{aligned}$	What are the different ways of plotting a graph?	9.a Sequences 9b. Straight line graphs 9c. Direct proportion on graphs* If time	Recognise, describe and continue number and pattern sequences. Revision from year 7. Find patterns and rules in sequences. Use the term-to-term rule to work out terms in a sequence. Use the position to term rule to work out the terms of a sequence. Use the position to term rule to work out if a number is in the sequence. Begin to relate the nth term for sequence generation for a linear equation in the form of $y=m x+c$ through the relationship between co-ordinates. . Plot co-ordinates in the four quadrants. Plot a straight-line graph for a basic equation. E.g. $y=x+2, y=x-4, y=3 x$ Plot a straight-line graph for a more equations involving more than one operation. Eg.y $=3 x+2$ Plot a straight-line graph with a negative gradient. Investigate the relationship between parallel graphs and graphs with the same intercept to relate the values of m and c to the equation. Calculate the gradient of a linear graph and understand this value changes the steepness of the graph.. Write the equations of straight line graphs in the form $y=$ $m x+c$. Recognise when values are in direct proportion with or without a graph. Introduce the idea of a multiplicative relationship in the form of $y=k x$ on a linear graph. Plot graphs and read values to solve problems.	Term, position, sequence, coordinate, equation, axes, quadrant, direct proportion, linear, table of values, $y=m x+c$, gradient, midpoint, y intercept. See command words	Starter quizzes for the term should include: Focused accuracy drills including timetables Required prior knowledge Mixed skills practice Knowledge gap support Look, cover, write, check. Pupils are expected to complete purposeful exercises and repeated practice on: - Continuing and generating sequences - Plotting simple straight line graphs - Finding the equation of a line using the gradient and y -intercept Multistep problems in a range of scenarios with reasoning, where necessary. Plenary style questions - White Rose Maths - Assessment Papers Maths Box > Topic resources > 4 Questions /Exit tickets	- Pearson's Pi2 Ex8 - Pearson's Theta2 Ex5/9 - Person's Delta2 Ex4/10 - Support/Core/Extend KS3 book Year 8 Ch5/9 - KS3 Consistency document Key \& exemplar questions - WRM Sequences WRM - Line graphs Year 8 Term 4 Knowledge Organiser for key terms, recall and low stakes quizzing. Pre-printed axes.. Please see the Resources section for available materials on skills practice and worded style questions for progression and assessment.
		Knowledge Recall	Big Questions of the unit are reviewed, and key areas revi Planned consolidation.		Knowledge Recall Lesson Pearson's KS3 Maths Tex Up, Strengthen and Exte	Unit 5/9 - Shared area. ook: Problem solving, Check questions.

			Worded problems should be used, as well as addressing any consistent errors, encourage and explore topic links and supported multistep problems				
		Knowledge Quiz	Knowledge Quiz and self-assessment.		Unit 5/9 Knowledge Quiz - Shared area.		
	Topic 6: Unit 6 - Decimals and ratio (Approximately 4 weeks)						
$\begin{aligned} & \hline \text { N1, N2, } \\ & \text { N15, R3, } \\ & \text { R4, R5 } \end{aligned}$	What is place value and why is it important? KS2, Yr7 Ch7	6.a Ordering decimals and rounding 6.b Placevalue calculations	Round decimals to two or three decimal places. Order decimals of any size, including positive/negative. Round numbers to a given number of significant figures. Round numbers to an appropriate degree of accuracy. Understand when it is more appropriate (and more accurate) to round to DP than SF (or vice versa). Convert larger numbers and decimals into standard form. Multiply larger numbers. Multiply decimals with up to two decimal places. Multiply any number by 0.1 and 0.01 . Divide by 0.1 and 0.01 . Multiply and divide by decimals. Solve problems involving decimals and all four operations. Understand the relative sizes of answers to related decimal calculations. Apply the inverse relationship of multiplication and division to decimal calculations and related calculations.	Round, decimal, accuracy, place value, significant figure, ratio, proportion, inverse, See command words	Pupils are expected to complete purposeful exercises and repeated practice on: - Rounding to decimal places or significant figures - Multiplying and dividing decimals - Simplifying and dividing into a ratio. - Mixed ratio problems including proportion and unit ratio uses. Practical problems involving decimals and ratio in real-life contexts. Multistep problems in a range of scenarios with reasoning, where necessary. Aim for proficiency and ensure written work is of a high quality. Plenary style questions - White Rose Maths - Assessment Papers Maths Box > Topic resources > 4 Questions LExit tickets	- Pearson's Pi2 Ex5 - Pearson's Theta2 Ex6 - Person's Delta2 Ex6 - Support/Core/Extend KS3 book Year 8 Ch6 - Cambridge Essentials support/core NCh3-5 - KS3 Consistency document Key \& exemplar questions - WRM - Place Value WRM - Ratio and Scale WRM - Standard form Ratio 'bar method' manipulatives - Bar Modelling (mathsbot.com) Ratio shares manipulatives - Sharing in a ratio	Gatsby Benchmarks: Careers \& Personal Finance Use real-life contexts with decimal monetary values wherever possible in KS3 to help students to engage and relate learning to everyday and working life. Discuss the relevance of Maths skills to develop confidence in monetary calculations and why this is important, incorporated within lessons as examples
	How do we calculate with decimals and ratio ? KS2, Yr7 Ch7	6.c Ratio and proportion with decimals	Use ratio notation, simplify a ratio and recognise equivalents - year 7 revision. Understand the same 'rule' applies to simplifying ratios involving fractions as ratios involving decimals'. Solve worded problems involving ratio. Divide a quantity into two or more parts in a given ratio. Solve ratio and proportion problems involving decimals. Use unit ratios. Understand how to use unit ratios to make comparison.			(mathsbot.com) Active Learn > KS3 Maths Progress > Resources > Ch6 PDFs Year 8 Term 4 Knowledge Organiser for key terms, recall and low stakes quizzing. Please see the Resources section for available materials on skills practice and worded style questions for progression and assessment	and practice. Gatsby Benchmarks: Careers \& Personal Finance Use real-life contexts with ratios wherever possible in KS3 to help students to engage and relate learning to everyday and working life.
		Knowledge Recall	Big Questions of the unit are reviewed, and key areas revisited. Planned consolidation.		Knowledge Recall Lesson - Unit 6 - Shared area.		

| | | | Worded problems should be used, as well as addressing any consistent errors,
 encourage and explore topic links and supported multistep problems | Pearson's KS3 Maths Textbook: Problem solving, Check
 Up, Strengthen and Extend questions. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Knowledge
 Quiz | Knowledge Quiz and self-assessment. | Unit 6 Knowledge Quiz - Shared area. |

Assessments for the year group will take place in Week 3 of each term, followed by feedback and focussed Pupil Improvement Time.

Term 5						
	Topic 7: Unit 7 Lines and angles (Approximately 3 weeks)					
$\begin{aligned} & \text { G3, G4, } \\ & \text { G6, G7 } \end{aligned}$	How can we calculate angles without measuring? Ch8	7.a Quadrilaterals 7.b Angles in parallel lines 7.c Exterior and interior angles 7.d Solving geometric problems 7 e. Constructions	Revision of calculating angles in triangles, straight lines and points - year 7 Revision of conventional terms and notations to describe. Classify quadrilaterals by their geometric properties. Solve geometric problems using side and angle properties of special quadrilaterals, including co-interior angles. Calculate angles within quadrilaterals Name quadrilaterals from their properties. Identify alternate angles on a diagram. Identify corresponding angles. Identify vertically opposite angles Solve problems using properties of angles in parallel and intersecting lines. Understand that there are often different ways to find an answer. Calculate the sum of the interior and exterior angles of a polygon. Work out the sizes of interior and exterior angles of a polygon. Understand where the formula $(\mathrm{n}-2) \times 180$ comes from. Solve geometrical problems showing reasoning. Solve problems involving angles by setting up equations. Solving geometric problems may involve using angles in parallel lines, properties of triangles, quadrilaterals and polygons. Begin to explore basic ruler and compass constructions such as angle bisector and perpendicular to a line segment.	Parallel, acute, obtuse, reflex, corresponding, alternate, cointerior, vertically opposite, interior, exterior See KS3 command words	Starter quizzes for the term should include: Focused accuracy drills including timetables Required prior knowledge Mixed skills practice Knowledge gap support Look, cover, write, check. Pupils are expected to complete purposeful exercises and repeated practice on: - Finding missing angles in straight lines, around a point, in a triangle, quadrilateral and other polygons. - Identification and calculation of angles in parallel lines. - Combining multiple angle facts to solve problems. Practical problems involving angles. Multistep problems in a range of scenarios with reasoning, where necessary.	- Pearson's Pi2 Ex6 - Pearson's Theta2 Ex8 - Support/Core/Extend KS3 book Year 8 Ch7 - Cambridge Essentials 8 support/core GMCh2 Key \& exemplar questions - WRM - Construct and Measure WRM - Geometric reasons Polygons Active Learn > KS3 Maths Progress > Resources > Ch7 PDFs Year 8 Term 6 Knowledge Organiser for key terms, recall and low stakes quizzing. Please see the Resources section for available materials on skills practice and worded style questions for progression and assessment.

		Knowledge Recall	Big Questions of the unit are reviewed, and key areas revisited. Planned consolidation. Worded problems should be used, as well as addressing any consistent errors, encourage and explore topic links and supported multistep problems		Knowledge Recall Lesson - Unit 8 - Shared area. Pearson's KS3 Maths Textbook: Problem solving, Check Up, Strengthen and Extend questions.		
		Knowledge Quiz	Knowledge Quiz and self-assessment.		Unit 8 Knowledge Quiz - Shared area.		
Assessments for the year group will take place in Week 3 of each term, followed by feedback and focussed Pupil Improvement Time.							
Term 6							
$\begin{aligned} & \text { N8, } \\ & \text { N10, } \\ & \text { N12 } \end{aligned}$	Topic 9: Unit 10 Percentages, decimals and fractions (Approximately 3 weeks)						
	How and why do I convert between fraction, decimal and percentages? KS2, Yr7 Ch4,5	10.a Fractions and decimals 10.b Equivalent proportions	Recall equivalent fractions and decimals. Order fractions by converting them to decimals or equivalent fractions. Change time to decimal hours. Recognise recurring and terminating decimals and convert between them. Recognise where fractions of time and other measures result in a recurring decimal. Recall equivalent fractions, decimals and percentages. Use different methods to find equivalent fractions, decimals and percentages. Use the equivalence of fractions, decimals and percentages to compare two proportions. Understand proportions involving large numbers. Know how to deal with proportions that involve decimals. Compare and interpret more than two proportions.	Fraction, decimal, percentage, equivalent, proportion, increase, decrease, multiplier, reverse percentage. See KS3 command words	Pupils are expected to complete purposeful exercises and repeated practice on: - Converting between fractions, decimals and percentages. - Finding percentages of amounts, percentage increases and percentage decreases. Practical problems involving fractions, decimals and percentages. Multistep problems in a range of scenarios with reasoning, where necessary. Plenary style questions - White Rose Maths - Assessment Papers Maths Box > Topic resources > 4 Questions Exit tickets	- Pearson's Pi2 Ex9 - Pearson's Theta2 Ex10 - Person's Delta2 Ex6 - KS3 book Year 8 Ch10 - Cambridge Essentials 8 support/core NCh2 - KS3 Consistency document Key \& exemplar questions - WRM - FDP equivalents WRM - Fractions and percentages WRM - Percentage problems Active Learn > KS3 Maths Progress > Resources > Ch10 PDFs Year 8 Term 6 Knowledge Organiser for key terms, recall and low stakes quizzing. Please see the Resources section for available materials on skills practice and worded style questions for progression and assessment.	Gatsby Benchmarks: Careers \& Personal Finance Use real-life contexts with percentage values wherever possible in KS3 to help students to engage and relate learning to everyday and working life. Discuss the relevance of Maths skills to develop confidence in percentage calculations and why this is important, incorporated within lessons as examples and practice
	What is a multiplier and how do they work?	10.c Percentages of amounts	Express one number as a percentage of another when the units are different. Calculate percentages of amounts with a multiplier. Work out a number increased or decreased by a percentage. Calculate percentage change including profit and loss. Use the unitary method to solve percentage problems. Use a multiplier to calculate amounts increased or decreased by a percentage. Understand how to use a repeated multiplier to work out an amount that has undergone more than one \% change. Understand how to use the unitary method to work out an original amount where there has been more than one percentage change (e.g. a decrease of a given percentage and then an increase of a given percentage; or a decrease				

				necessary, including equal areas, working backwards and compound areas. Ensure written work is of a high quality. Plenary style questions - White Rose Maths Assessment Papers Maths Box > Topic resources > 4 Questions LExit tickets	worded style questions for progression and assessment.

Use of Big Questions and Lesson Questions

Please refer to the department document on using Big Questions as part of The Abbey Lesson - "What does an Abbey Lesson look like in Maths?".
Big Questions are designed to build upon pupils' prior knowledge and link topics across KS2, 3 and 4. Big Questions will connect a series of learning outcomes, as opposed to focussing on individual objectives. All students, regardless of ability will be exposed to the same knowledge within reason, but able to explore Mathematical concepts to varying depths and wider applications. The spectrum of the Big Question focus allows for this to happen. This is where Lesson Questions are used to tailor the approach, level of detail and depth of knowledge to suit the ability, attainment, and confidence of individual classes.

Common Misconceptions Notes

Unit 1
Place value errors, such as not aligning columns correctly when adding or subtracting. Check that students know to align columns from the right for whole numbers, and that they set their working out clearly
Not using correct order of operations. Emphasise that any calculations in brackets must be evaluated first.
$0.16 \div 2=0.8$ (use long division to demonstrate keeping the decimal point/place value).
 multiply 3 by -2 write 3×-2 or $3 \times(-2)$ to make it absolutely clear that there is no subtraction.
 used. Calculate -3-7 using the number line.
Students think that the square root of a number is half of the number and cube root is a third of the number. Use a function machine diagram to demonstrate squares, square roots, cubes and cube roots.
Students may not completely decompose a number into its prime factors. Refer the student to a list of prime numbers.
 the primes of each decomposed number ($12=2 \times 2 \times 3$ and $18=2 \times 3 \times 3$) and no more than primes than are necessary. Demonstrate that simply multiplying the two numbers together gives a number bigger than the LCM Writing the square of a negative number as negative. Encourage students to write the square out in full and apply the rules for multiplying negative numbers

Unit 2

When calculating the area of a parallelogram, using the slant height instead of the perpendicular height.
 find the volume it's the space that the shape takes up.

Not finding the area of all 6 faces. Resolve by making a sketch of the net of the cube/cuboid and writing the area of each face on the net so that none are forgotten. Confusion of vocabulary for faces, edges and vertices. Students can remember that Faces are Flat, or that the V of Vertices has a vertex at the bottom.
Students often orient isometric paper incorrectly. Check the distance between vertically aligned dots is shorter than the distance between horizontally aligned dots.
When 'counting cubes' to find the volume of a cuboid or shape made from cubes, students often omit any 'hidden' cubes. Encourage students to visualise the full shape
Units used in the answer must match units given in question. Students also sometimes incorrectly use length or area units rather than volume units.
Pupils multiply by 10, 100, 1000 instead of dividing. Encourage students to use common sense to check calculations.
Forgetting to calculate the cross-sectional area correctly, e.g. forgetting to divide by 2 for a triangle or not being able to calculate the area of a trapezium
Confusing the formula for the area of a circle with the formula for the circumference of a circle.
Applying Pythagoras' theorem to triangles that are not right-angled.

Unit 3

Students may have difficulties finding the size of equal class intervals. Encourage them to identify the minimum and maximum values that would lie in a class interval to find the size. Not recognising the modal class as being the most frequent group for grouped data.
Joining bars for discrete data
Lack of understanding that a pie chart represents proportions rather than actual numbers
 one for the next data item. Just as when eating pizza, you don't go back to a 'slice' once you have finished it.
Calculating the mean - dividing by the number of rows in the table, not by the total frequency. Pictorial Use bar model e.g. for Q2
Not ordering the leaves. Emphasise that drawing the diagram is a two-step process - Step 1 decide on the stem, write in the leaves as you cross them off the data list, Step 2 copy out neatly, with the leaves in order.
Writing only the 'leaf' as the mode or median. Ask Is your answer sensible? Is it one of the data values? e.g. if the student says the modal parking time is 2 minutes, ask Did anyone park for only 2 minutes?
Not being able to decide which is the most appropriate average to use in an 'open' question. Suggest this strategy: work out all the averages. Decide which is closer to most of the data values.
Thinking the line of best fit has to go through zero. See the discussion after Q6. Emphasise that the line has to go through the middle of the data points and follow the shape of the data distribution.

Unit 4

Students may write $5 x-4 x=1 x$, or $4 x-5 x=-1 x$. Although it is not incorrect, explain to students that it is not necessary to write the 1 . The convention is to write $5 x-4 x=x$, or $4 x-5 x=-x$
 are not adding the same types of items.
Not using the inverse when finding inputs. Encourage students to draw the inverse function machine, and also to check their answer by putting it through the original function machine - do they get the given output?
When expanding brackets, multiplying only the first term by the number outside the bracket, e.g. $4(x+2)=4 x+2$. Concrete Resolve using an activity such as using a box to represent a bracket.
 Students only change the sign of the first term when multiplying a bracket by a negative quantity. Demonstrate using numbers, e.g. $-2 \times(5+1)$ by expanding and using BIDMAS and then $-2 \times(5-1)$
 Students divide before adding/subtracting from both sides of a two-step equation. Use function machines to demonstrate the order of working.
When expanding brackets, making errors with the signs. Display the rules for multiplying with negative numbers.
Getting the signs wrong when substituting a negative value. Display the rules for multiplying with negative numbers. Encourage students to write their working out in full
Getting the signs wrong when expanding brackets to solve an equation. Encourage students to write negative numbers in a different colour (or circle them), to help them see the sign as 'part of' the number.

Unit 5

Only checking the first difference and assuming the sequence continues in the same way. Assuming a sequence increases linearly.
Accuracy in plotting graphs - uneven intervals or incorrectly marked scales; poor or no labelling. Produce a graph with a number of exaggerated errors for pupils to spot
Thinking the gradient is found by dividing the change in x by the change in y rather than the other way around. Gradient = change in vertical / change in horizontal so deciding a phrase to aid memory may help:
 upright), as this means moving them up and down for the $x=$ and left to right of centre for the $y=$
Working out a gradient when the scales are different on each axis. Confusing negative and positive gradients.
Incorrectly substituting into equations involving negatives.

Unit 6

When subtracting, writing the wrong number on the top of the calculation.
Forgetting to divide by 10 / 100 after carrying out the calculation.
Assuming 3.09 is larger than 3.4 , misunderstanding place value. Not adding zero placeholders to help with calculations. Confusing ascending and descending.
Not correctly lining up the numbers when adding or subtracting.

Students often confuse < and >. Open end points to larger number.
Failure to change both numbers in a decimal division. Encourage students to see this as an equivalent calculation
Not understanding that ratios can be simplified like fractions.
Failure to understand unit ratios as being a special decimal ratio where one quantity is 1 .
Students might need help to solve problems suggested as they are in engineering contexts that may be unfamiliar. Be clear about how you would solve them in advance.
Inability to interpret a unit ratio i.e. reversing the meaning. Students should rehearse saying out loud what the unit ratio means.

Unit 7
Students use the wrong scale of a protractor. Demonstrate reading an angle from 0°. Encourage students to check that their reading is reasonable.
Students assume two angles are vertically opposite without using a ruler to check straight lines. Demonstrate using a diagram similar to Q3c.
Students fail to realise that alternate angles can be obtuse. Use a diagram to show that, for every pair of acute alternate angles, there is a pair of obtuse alternate angles (giving a stretched Z).
 in the question to identify isosceles, equilateral and right-angled triangles.
 Students do not give enough reasons for their calculations. Point out that although they may get the correct answer, they may lose marks because they have not presented a reasoned argument.

Unit 8

Not simplifying fractions fully. Colour the fractions on squared paper, in blocks of rows and columns, to try to then visualise a simpler fraction
Some students think that you can only simplify by halving, or if you start by halving you have to continue by halving instead of using a different divisor.
Adding or subtracting the denominator as well as the numerator.
 Not understanding that fractions, decimals and percentage are different ways of recording the same information.
Not making the fractions have equal denominators before calculating.
Not simplifying before / after multiplying fractions.

Unit 9

 represents certainty.

Thinking experimental probabilities are exact, or will always be the same if an experiment is repeated.
Making predictions based on a small number of trials. Encourage students to get into the habit of using the number of trials to comment on the reliability of their estimates.
 they look the same when written.
 approximation.
 f a spinner or dice is fair.
 Heads with a coin twice ($x=$).
Students ignore the fact that two events are dependent. Use a bag of say 3 red and 2 blue coloured counters to demonstrate that the probabilities change when one counter is removed.

Unit 10

Converting hours and minutes into decimal numbers of hours, e.g. thinking that 2 hours 40 minutes is the same as 2.4 hours.
Assuming that division always makes things smaller.
Students may not notice that a decimal is recurring if the repeated pattern is very long. Not using dot notation correctly
Students have difficulty increasing or decreasing by complex percentages, e.g. $3 \%, 1.5 \%$. Find 1% first, then you can work out any number of percent.
Students do not know whether to multiply or divide by a multiplier. Encourage students to check that their answer makes sense, e.g. a smaller amount after a reduction
Students think that comparing proportions can answer questions comparing amounts. Clarify using a simple example, e.g. 10% of $£ 20$ compared to 5% of $£ 60$.
Place value errors in the algebra when changing recurring decimals to fractions.
Confusion over reverse percentages

KS3 - Command Words

 work. They will later build into GCSE questions.

Command word	Comments
Write down... Write...	No working will be needed
Find...	Some working will be needed but will be minimal
Work out...	Used interchangeably with 'calculate', it will be necessary to do some working out
Calculate...	Used interchangeably with 'work out' but use of 'calculate' suggests that a calculator will be needed, it will be necessary to do some workings.
Explain...	Explanation needed - may be a sentence or could be a mathematical statement
Give a reason...	Clear reasons needed; if geometrical reasons then must link into working
Draw...	Implies accuracy is important
Sketch...	Less formal than 'draw'...(no accurate measurements needed)
Complete...	Usually means that some values need filling in, for example, on a probability tree diagram or a table of values
Show...	All working needed to get to the required answer must be shown
Prove...	More formal than 'show', all steps must be present and, in the case of a geometrical proof, reasons must be given
Prove algebraically...	Algebra must be used in the proof
Describe...	Words needed to describe, for example, a transformation
Justify...	Show all working or give a written explanation
Expand...	Remove brackets
Expand and simplify...	Remove brackets and simplify
Factorise...	Straight forward factorisation
Factorise fully...	More complex factorisation, more than one factor to consider
Simplify...	Simplify the given expression
Simplify fully....	Likely to be more than one stage needed to simplify expression
Solve...	Solve an equation / inequality

General Resources Bank

Teachers will select the resources required for individual lessons. These will be fit for purpose for their class in order to promote the best progress and understanding for individual objectives, whilst still working towards the Big Question.

A sample list of resource materials is given as a starting point or for new ideas and are used by the department:

- Pearson's Edexcel KS3 Textbook Series 1 and 2 - ActiveLearn (pearsonactivelearn.com)
- Pearson's KS3 Practice homework sheets - ActiveLearn (pearsonactivelearn.com)
- MathsBox-Mathsbox
- A wide-ranging selection of mixed quizzes, repeated practice and differentiated questions for use in the classroom, including short term cover work.
- MathsBot - MathsBot.com - Tools for Maths Teachers
- Interactive tools and activites to aid the teaching of mathematics. Hundreds of randomly generated questions and answers and Mathematics Manipulatives for mastery.
- Corbett maths Corbettmaths - Videos, worksheets, 5-a-day and much more
- Video tutorials, questions, revision resources and puzzles.
- Maths 4 Everyone - Maths Worksheets [Primary and Secondary] (maths4everyone.com)
- Carefully thought-out questions that are designed for the different stages of learning a topic. Typically, there is one sheet that focuses on the First Steps, and then other sheets that contain questions which help students to Strengthen and then Extend their understanding.
- Go Teach Maths - Go Teach Maths: 1000 s of free resources
- Animated PowerPoint slides to demonstrate a mathematical method within lessons and supporting activities with an individual or paired consolidation focus.
- Oak Academy - Oak National Academy (thenational.academy)
- Online lessons and resources to support independent study - particularly useful for students who are having to spend significant amounts of time outside of the classroom.
- Mr Barton - Variation Theory - Variation Theory
- A collection of high-quality, sequences of questions and examples using key principles from Variation Theory. Holds questions and examples constant, together with the mathematical behaviour of reflect, expect, check, explain.
- Dr Frost Maths - DrFrostMaths.com
- A diverse set of free teaching resources and tools including downloadable teaching slides/worksheets for KS3-5, teaching videos and an online platform for whiteboard practice and exam questions.
- White Rose Secondary KS3 SOL - Secondary SOL \| White Rose Maths | FREE Maths Teaching Resources
- Additional Maths Blogs and other online resources include:

Solvemymaths	Miss B resources
Resouraholic	Boss Maths
Colleenyoung.wordpress	Nrich
missquinnmaths.wordpress	Pret Homework
Just Maths	BBC Bitesize

Mathed Up

Assessments/ Quizzes

Through KS3, pupils are assessed regularly to monitor progress, understanding and make predictions within lessons. Assessment of Learning takes place in the form of:

- Formal Graded Assessments

Formal assessments will occur once a term, during week 3 for monitoring purposes and formal feedback. It will be a mixed topic assessment to mimic the mixed topics they will need to answer for their end of year exam. It is to support a more active attitude to revision in small, manageable tasks, as well as allowing students to revisit topics in a formal setting and identify gaps in knowledge.

- Topic Quizzes

Other assessment will be end of unit quizzes to assess recent learning and conducted when learning of that sequence is concluded.
For an improved response to revision and independent study, students are expected to undertake guided revision tasks through the year before assessments as part of their homework. Staff will support students with effective techniques and resources offered where required. These revision homework tasks will consist of:

- Directions to important online videos and tasks to consolidate knowledge or expose students to a higher-level task or topic.
- Pre-prepared practice questions on the relevant topics, such as the Active Learn assessment materials and Hegarty Maths.
- End of Year Assessments

Dates to follow.

Consolidation and Review Activities

As part of each chapter of work, the students will need to undertake consolidation and review activities of their learning before moving on to new topics. This will be done as a Knowledge Recall activity.

This should consist of the following:
a. Revisiting the Big Questions, answered with new knowledge and connections reinforced. The focus here is on questioning of students and consolidation the sequences of lessons from the chapter.
b. Problem solving / literacy based questions with emphasis placed on highlighting key words and data, before undertaking problems as a sequence of steps. This is only if appropriate for the topic and required as additional work to lesson content
c. Depending out the outcome of the Knowledge Recall, students can be directed on to either the strengthen exercise for any gaps in understanding or the extension activity work.

A topic quiz will then be set to assess understanding
Starter activities should include topics identified in PIT from earlier assessments, as well as a constant revision of previous topics for assessment for learning

Homework

Mathematics homework is designed and set to promote students' understanding and their ability to use mathematics in a variety of situations.
Homework should be set once per week and consist of:

- Online homework through Hegarty Maths *Trial beginning in September 2021.
- Preparation and Revision for assessments and quizzes, with particular reference to the Knowledge Organisers.
- Written homework when the teacher feels it is necessary or beneficial
- Research or Investigative Tasks.

It is expected that KS3 students will undertake a 30-45 minutes homework per week.
All students are given individual logins to a variety of virtual learning environments, which give them access to video tutorials, practice questions and answers. The main programmes being used are: Hegarty Maths, Active Learn.
For the majority of the time, homework will support in-class learning and reinforce topics that students have studied recently within the classroom.
If students fail to complete homework, staff will follow procedures outlined in the Behaviour Policy.

SMSC/ ICT/ Cross Curricular Connections

The programme of study is designed to encourage the development of wider problem solving as the mathematical knowledge of the student advances. Students must look for action points and next steps that are not explicit, in order to solve increasingly complex problems.
Lessons should :

- Value listening and respecting the viewpoint of others in problem solving.
- Promote the discussion of mathematical understanding and challenge assumption.
- Support students to question information and data that they are presented with.
- Discourage jumping to conclusions
- Seek opportunities to build self-confidence.
- Include questions chosen based on prior lack of confidence,
- Encourage collaborative learning in the classroom - in the form of listening and learning from each other and paired discussion.
- Develop powers of logic, reasoning and explanation.
- Build competence - every student is good at something, and students struggle when connections between their strengths are not obvious or of a clear use.
- Allow choices to promote self-determination, and deal with the consequences, however minor. Giving authentic (not false) choices doesn't have to be complex-for example,
choices around how to complete a multi-step problem.
Staff will seek out opportunities to encourage these values within individual lessons.
Staff should also seek out opportunities to link learning to other subjects as part of the ongoing cross -curricular cohesion project. This is ongoing but some existing links are referred to in this document as examples (The Abbey Lens). By maintaining high standards of behaviour, including mutual respect and tolerance for different faiths and beliefs and encouraging learners to respect the protected characteristics, class teachers will be promoting British values. Specific examples relating to the British Values are detailed in certain chapters.

