Mathematics

Year 13

A Level Pure Mathematics Scheme of Learning 2023-2024

Subject leader: K Ellender

Topics by term	Topic overview for 13 - A Level maths						
	Term 1		rm 2	Term 3	Term 4	Term 5	Term 6
	1. Algebraic Methods 1.1. Proof By Contradiction 1.2. Algebraic Fractions 1.3. Partial Fractions 1.4. Repeated Factors 1.5. Algebraic Division 2. Functions and Graphs 2.1. The Modulus Function 2.2. Functions and Mappings 2.3. Composite Functions 2.4. Inverse Functions 2.5. $y=\|f(x)\|$ and $y=f(\|x\|)$ 2.6. Combining Transformations 2.7. Solving Modulus Problems 3. Sequences and Series 3.1. Arithmetic Sequences 3.2. Arithmetic Series 3.3. Geometric Sequences 3.4. Geometric Series 3.5. Sum to Infinity 3.6. Sigma Notation 3.7. Recurrence Relations 3.8. Modelling with Series 4. Binomial Expansion 4.1. Expanding $\llbracket(1+x) \rrbracket \wedge n$ 4.2. Expanding $\llbracket(a+b x) \rrbracket \wedge n$ 4.3. Using Partial Fractions	5. 5.1 5.2 5.3 5.4 5.5 6. 6.1 6.2 6.3 6.4 6.5 7. 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Radians Radian Measure Arc Length Areas of Sectors and Segments Solving Trigonometric Equations Small Angle Approximations Trigonometric Functions Secant, Cosecant and Cotangent Graphs of sec, cosec, and cot Using sec, cosec and cot Trigonometric Identities Inverse Trigonometric Identities Trigonometry and Modelling Addition Formulae Using the Angle Addition Formulae Double-Angle Formulae Solving Trigonometric Equations Simplifying a cose(x) $\pm \mathrm{b} \sin (\mathrm{x})$ Proving Trigonometric Identities Modelling with Trigonometric Functions.	8. Parametric Equations 8.1. Parametric Equations 8.2. Using Trigonometric Identities 8.3. Curve Sketching 8.4. Points of Intersection 8.5. Modelling with Parametric Equations 9. Differentiation 9.1. Differentiating sin x and cosilix 9.2. Differentiating exponentials and logarithms 9.3. The chain rule 9.4. The product rule 9.5. The quotient rule 9.6. Differentiating trigonometric functions 9.7. Parametric differentiation 9.8. Implicit differentiation 9.9. Using second derivatives 9.10. Rates of change	10. Numerical Methods 10.1. Locating roots 10.2. Iteration 10.3. The Newton-Raphson Method 10.4. Applications to Modelling 11. Integration 11.1. Integrating Standard Functions 11.2. Integrating $f(a x+b)$ 11.3. Using Trigonometric identities 11.4. Reverse Chain Rule 11.5. Integration by Substitution 11.6. Integration by parts 11.7. Partial Fractions 11.8. Finding areas 11.9. The trapezium rule 11.10. Solving differential equations 11.11. Modelling with differential equations 12. Vectors 12.1. 3D Coordinates 12.2. Vectors in 3D 12.3. Solving Geometric Problems 12.4. Applications to Mechanics	Revision	N/A

How do we expand binomials involving fractions?	4.2 Expanding $(a+b x)^{n}$ 4.3 Using partial fractions	By the end of this topic, students should be able to... - Expand $(\mathbf{1}+\boldsymbol{x})^{\boldsymbol{n}}$ for any rational constant n and determine the range of values of x for which the expansion is valid. - Expand $(\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x})^{\boldsymbol{n}}$ for any rational constant n and determine the range of values of x for which the expansion is valid. - Use partial fractions to expand fractional expressions.		Ascending Rational Approximatio n	Unit 4 - Exercises from the Year 2 Pure Mathemati CS Textbook and Practice Book by Pearson	Mathsbo x, Pearson Textbook and Practice Book, Mathsgen ie	Mathematical reasoning. Construction of arguments.
Term 2							
Radians - Week 1-2 (8-9)							
What are the benefits to using an alternative scale for measuring angles?	5.1 Radian measure 5.2 Arc length 5.3 Areas of sectors and segments 5.4 Solving trigonometric equations 5.5 Small angle approximations	By the end of this topic, students should be able to... - Convert between degrees and radians and apply this to trigonometric graphs and their transformations. - Know exact values of angles measured in radians. - Find an arc length using radians. - Find areas of sectors and segments using radians. - Solve trigonometric equations in radians. - Use approximate trigonometric values when θ is small.		Radians Degrees Angles Arc Sector Segment	Unit 5 - Exercises from the Year 2 Pure Mathemati cs Textbook and Practice Book by Pearson	Mathsbo x, Pearson Textbook and Practice Book, Mathsgen ie	Modelling relevance. Critical thinking in contextual problems. Mathematical reasoning. Construction of arguments.
Trigonometric Functions - Week 3-4 (10-11)							

How do we apply the reciprocal trigonometric functions?	6.1 Secant, cosecant, and cotangent 6.2 Graphs of secx, cosecx, and cotx 6.3 Using secx, cosecx, and cotx 6.4 Trigonometric identities 6.5 Inverse trigonometric functions	By the end of this topic, students should be able to... - Understanding the definitions of secant, cosecant, and cotangent and their relationships to cosine, sine and tangent. - Understand the graphs of secant, cosecant, and cotangent and their domain and range. - Simplify expressions, prove simple identities and solve equations involving secant, cosecant, and cotangent. - Prove and use $\sec ^{2} \boldsymbol{x} \equiv 1+$ $\tan ^{2} x$ and $\operatorname{cosec}^{2} x \equiv 1+$ $\cot ^{2} x$. - Understand and use inverse trigonometric functions and their domains and ranges.		Secant Cosecant Cotangent Identity Inverse Domain Range	Unit 6 - Exercises from the Year 2 Pure Mathemati cs Textbook and Practice Book by Pearson	Mathsbo x, Pearson Textbook and Practice Book, Mathsgen ie	Modelling relevance. Critical thinking in contextual problems. Mathematical reasoning. Construction of arguments.
Trigonometry and Modelling - Week 5-6 (12-13)							
How do the trigonometric identities help us to model real life situations?	7.1 Addition formulae 7.2 Using the angle addition formulae 7.3 Double-angle formulae 7.4 Solving trigonometric equations 7.5 Simplifying $a \cos (\theta) \pm$ $b \sin (\theta)$ 7.6 Proving trigonometric identities 7.7 Modelling with trigonometric functions	By the end of this topic, students should be able to... - Prove and use the addition formulae. - Understand and use the double angle formulae. - Solve trigonometric equations using the double angle and addition formulae. - Write expressions of the form $a \cos (\theta) \pm b \sin (\theta)$ in the forms $R \cos (\theta \pm \alpha)$ or $R \sin (\theta \pm \alpha)$. - Prove trigonometric identities using a variety of identities.	0 0 0 0	Prove Double-Angle Formulae Addition Formula Simplify	Unit 7 - Exercises from the Year 2 Pure Mathemati cs Textbook and Practice Book by Pearson	Mathsbo \mathbf{x}, Pearson Textbook and Practice Book, Mathsgen ie	Mathematical reasoning. Construction of arguments.

