

## Mathematics

## Year 13

## A Level Pure Mathematics Scheme of Learning 2023 - 2024

## Subject leader: K Ellender

| Topics  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | overview for 13 – A Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | maths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |               |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| by term | Term 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Term 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Term 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Term 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Term 5             | Term 6        |
| by term | Term 1         1.       Algebraic Methods         1.1.       Proof By Contradiction         1.2.       Algebraic Fractions         1.3.       Partial Fractions         1.4.       Repeated Factors         1.5.       Algebraic Division         2.       Functions and Graphs         2.1.       The Modulus Function         2.2.       Functions and Mappings         2.3.       Composite Functions         2.4.       Inverse Functions         2.5.       y= f(x)  and y=f( x )         2.6.       Combining Transformations         2.7.       Solving Modulus Problems         3.       Sequences and Series         3.1.       Arithmetic Sequences         3.2.       Arithmetic Sequences         3.3.       Geometric Series         3.4.       Geometric Series         3.5.       Sum to Infinity         3.6.       Sigma Notation         3.7.       Recurrence Relations         3.8.       Modelling with Series         4.       Binomial Expansion         4.1.       Expanding [(1+x)] ^n | Term 2         5.       Radians         5.1.       Radian Measure         5.2.       Arc Length         5.3.       Areas of Sectors and Segments         5.4.       Solving Trigonometric Equations         5.5.       Small Angle Approximations         6.       Trigonometric Functions         6.1.       Secant, Cosecant and Cotangent         6.2.       Graphs of sec, cosec, and cot         6.3.       Using sec, cosec and cot         6.4.       Trigonometric Identities         6.5.       Inverse Trigonometric Identities         7.       Trigonometry and Modelling         7.1.       Addition Formulae         7.2.       Using the Angle Addition Formulae         7.3.       Double-Angle Formulae         7.4.       Solving Trigonometric Equations         7.5.       Simplifying a cos (x) tb in (x)         7.6.       Proving Trigonometric Identities         7.7.       Modelling with Trigonometric Identities         7.7.       Modelling with Trigonometric Identities | <ul> <li>Term 3</li> <li>8. Parametric Equations</li> <li>8.1. Parametric Equations</li> <li>8.2. Using Trigonometric<br/>Identities</li> <li>8.3. Curve Sketching</li> <li>8.4. Points of Intersection</li> <li>8.5. Modelling with Parametric<br/>Equations</li> <li>9. Differentiation</li> <li>9.1. Differentiating sin<sup>10</sup>/<sub>10</sub> x and<br/>cos<sup>10</sup>/<sub>10</sub> x</li> <li>9.2. Differentiating exponentials<br/>and logarithms</li> <li>9.3. The chain rule</li> <li>9.4. The product rule</li> <li>9.5. The quotient rule</li> <li>9.6. Differentiating trigonometric<br/>functions</li> <li>9.7. Parametric differentiation</li> <li>9.8. Implicit differentiation</li> <li>9.9. Using second derivatives</li> <li>9.10. Rates of change</li> </ul> | Term 410. Numerical Methods10.1. Locating roots10.2. Iteration10.3. The Newton-Raphson Method10.4. Applications to Modelling11. Integration11.1. Integrating Standard Functions11.2. Integrating f(ax+b)11.3. Using Trigonometric identities11.4. Reverse Chain Rule11.5. Integration by Substitution11.6. Integration by Substitution11.7. Partial Fractions11.8. Finding areas11.9. The trapezium rule11.10. Solving differential equations11.11. Modelling with differential equations12.1. 3D Coordinates12.2. Vectors in 3D12.3. Solving Geometric Problems12.4. Applications to Mechanics | Term 5<br>Revision | Term 6<br>N/A |

|                    | •                                                                                    | Exan                                                                                                                                                                                      | n Board - Edexcel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | •                                                                                                                        | •                                                                                   |                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spec<br>References | Big Questions                                                                        | Topic area: Main Items                                                                                                                                                                    | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Key Terms and<br>Concepts Literacy<br>Numeracy                                                                                                                                                                      | Assessmen<br>t and<br>homework<br>tasks                                                                                  | Resource<br>s                                                                       | Personal<br>Development<br>Curriculum links<br>(SMSC, British<br>Values, WPD)                                                                                                                                                                                                                                                                                              |
| Term 1             |                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                            |
| Algebraic M        | ethods – Week 2-3<br>How do we build<br>on our algebraic<br>methods from year<br>12? | 1.1 Proof by contradiction1.2 Algebraic Fractions1.3 Partial Fractions1.4 Repeated Factors1.5 Algebraic Division                                                                          | <ul> <li>By the end of this topic, students should be able to</li> <li>Use proof by contradiction to prove true statements.</li> <li>Multiply and divide two or more algebraic fractions.</li> <li>Add or subtract two or more algebraic fractions.</li> <li>Convert and expression with linear factors in the denominator into partial fractions.</li> <li>Convert an expression with repeated linear factors in the denominator into partial fractions.</li> <li>Divide algebraic expressions.</li> <li>Convert an improper fraction into partial fraction form.</li> </ul> | <ul> <li>Contradiction</li> <li>Assumption</li> <li>Rational</li> <li>Irrational</li> <li>Numerator</li> <li>Denominator</li> <li>Partial<br/>Fraction</li> <li>Linear</li> <li>Factor</li> <li>Multiple</li> </ul> | Unit 1 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie. | The course content<br>encourages students to<br>apply logic, reason,<br>construct arguments,<br>critically analyse and<br>communicate<br>effectively. These skills<br>are applied to both<br>number based practice<br>and to wider areas of<br>mathematical<br>application in context<br>as students consider<br>where these ideas<br>could be used in the<br>wider world. |
| Functions ar       | d Graphs – Week 3-4                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                            |
|                    | How do we apply<br>transformations to<br>the modulus<br>function?                    | 2.1 The modulus function2.2 Functions and mappings2.3 Composite functions2.4 Inverse functions2.5 $y =  f(x) $ and $y = f( x )$ 2.6 Combining transformations2.7 Solving modulus problems | <ul> <li>By the end of this topic, students should be able to</li> <li>Understand and use the modulus function.</li> <li>Understand mappings and functions and use domain and range.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Modulus</li> <li>Function</li> <li>Domain</li> <li>Range</li> <li>Composite</li> <li>Inverse</li> </ul>                                                                                                    | Unit 2 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice                       | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie. | Mathematical<br>reasoning.<br>Construction of<br>arguments.                                                                                                                                                                                                                                                                                                                |

| 3.6 Sigma notationthe sum of the first n terms of<br>an arithmetic sequence.3.7 Recurrence relationsFind the nth term of a<br>geometric sequence.3.8 Modelling with seriesFind the nth term of a<br>geometric sequence.Prove and use the formula for<br>the sum of a finite geometric<br>series.Prove and use the formula for<br>a sum to infinity of a<br>convergent geometric series.Use sigma notation to<br>describe series.Generate sequences from | relation<br>• Convergent<br>• Divergent                                                                 | Textbook<br>and<br>Practice<br>Book by<br>Pearson                              | Book,<br>Mathsgen<br>ie.                                | arguments.                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| and how do they<br>model real life?3.2 Arithmetic seriesshould be able to3.3 Geometric sequences5.3 Geometric series• Find the nth term of an<br>arithmetic sequence.3.4 Geometric series• Prove and use the formula for3.5 Sum to infinity• Prove and use the formula for                                                                                                                                                                              | <ul> <li>Sequence</li> <li>Series</li> <li>Arithmetic</li> <li>Geometric</li> <li>Recurrence</li> </ul> | Pearson<br>Unit 3 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice | Modelling<br>relevance.<br>Critical thinking ir<br>contextual<br>problems.<br>Mathematical<br>reasoning.<br>Construction of |

| How do we expand<br>binomials involving<br>fractions?<br>2                                                   | <ul> <li>4.2 Expanding (a + bx)<sup>n</sup></li> <li>4.3 Using partial fractions</li> </ul>                                                              | <ul> <li>By the end of this topic, students should be able to</li> <li>Expand (1 + x)<sup>n</sup> for any rational constant n and determine the range of values of x for which the expansion is valid.</li> <li>Expand (a + bx)<sup>n</sup> for any rational constant n and determine the range of values of x for which the expansion is valid.</li> <li>Use partial fractions to expand fractional expressions.</li> </ul>                                              | <ul> <li>Ascending</li> <li>Rational</li> <li>Approximation</li> <li>n</li> </ul>                          | Unit 4 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie | Mathematical<br>reasoning.<br>Construction of<br>arguments.                                                                               |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ns – Week 1-2 (8-9)<br>What are the<br>benefits to using an<br>alternative scale<br>for measuring<br>angles? | 5.1 Radian measure<br>5.2 Arc length<br>5.3 Areas of sectors and<br>segments<br>5.4 Solving trigonometric<br>equations<br>5.5 Small angle approximations | <ul> <li>By the end of this topic, students should be able to</li> <li>Convert between degrees and radians and apply this to trigonometric graphs and their transformations.</li> <li>Know exact values of angles measured in radians.</li> <li>Find an arc length using radians.</li> <li>Find areas of sectors and segments using radians.</li> <li>Solve trigonometric equations in radians.</li> <li>Use approximate trigonometric values when θ is small.</li> </ul> | <ul> <li>Radians</li> <li>Degrees</li> <li>Angles</li> <li>Arc</li> <li>Sector</li> <li>Segment</li> </ul> | Unit 5 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie | Modelling<br>relevance.<br>Critical thinking in<br>contextual<br>problems.<br>Mathematical<br>reasoning.<br>Construction of<br>arguments. |

| the rec | o we apply<br>ciprocal<br>ometric<br>ons?       | <ul> <li>6.1 Secant, cosecant, and<br/>cotangent</li> <li>6.2 Graphs of secx, cosecx, and<br/>cotx</li> <li>6.3 Using secx, cosecx, and cotx</li> <li>6.4 Trigonometric identities</li> <li>6.5 Inverse trigonometric<br/>functions</li> </ul>                                   | - | the end of this topic, students<br>build be able to<br>Understanding the definitions<br>of secant, cosecant, and<br>cotangent and their<br>relationships to cosine, sine<br>and tangent.<br>Understand the graphs of<br>secant, cosecant, and<br>cotangent and their domain<br>and range.<br>Simplify expressions, prove<br>simple identities and solve<br>equations involving secant,<br>cosecant, and cotangent.<br>Prove and use $\sec^2 x \equiv 1 + \tan^2 x$ and $\csc^2 x \equiv 1 + \cot^2 x$ .<br>Understand and use inverse<br>trigonometric functions and<br>their domains and ranges. |                                         | Secant<br>Cosecant<br>Cotangent<br>Identity<br>Inverse<br>Domain<br>Range | Unit 6 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie | Modelling<br>relevance.<br>Critical thinking in<br>contextual<br>problems.<br>Mathematical<br>reasoning.<br>Construction of<br>arguments. |
|---------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| identit | o the<br>ometric<br>ies help us to<br>real life | ek 5-6 (12-13)7.1 Addition formulae7.2 Using the angle addition<br>formulae7.3 Double-angle formulae7.4 Solving trigonometric<br>equations7.5 Simplifying $a cos(\theta) \pm b sin(\theta)$ 7.6 Proving trigonometric<br>identities7.7 Modelling with<br>trigonometric functions |   | the end of this topic, students<br>build be able to<br>Prove and use the addition<br>formulae.<br>Understand and use the<br>double angle formulae.<br>Solve trigonometric<br>equations using the double<br>angle and addition formulae.<br>Write expressions of the form<br>$a \cos(\theta) \pm b \sin(\theta)$ in the<br>forms $R \cos(\theta \pm \alpha)$ or<br>$R \sin(\theta \pm \alpha)$ .<br>Prove trigonometric<br>identities using a variety of<br>identities.                                                                                                                            | 000000000000000000000000000000000000000 | Prove<br>Double-Angle<br>Formulae<br>Addition<br>Formula<br>Simplify      | Unit 7 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie | Mathematical<br>reasoning.<br>Construction of<br>arguments.                                                                               |

|                                                                                          |                                                                                                                         | • Use trigonometric functions to model real-life situations.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                          |                                                                                    |                                                                                                                                          |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Ferm 3<br>Parametric Equations –<br>How do th<br>parametric                              | e 8.1 Parametric equations                                                                                              | By the end of this topic, students should be able to                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Parametric</li> <li>Cartesian</li> </ul>                                                                                            | Unit 8 -<br>Exercises                                                                                                    | Mathsbo<br>x,                                                                      | Modelling<br>relevance.<br>Critical thinking ir                                                                                          |
| equations<br>to model r<br>situations                                                    | help us<br>real life<br>8.3 Curve sketching<br>8.4 Points of intersection<br>8.5 Modelling with parametric<br>equations | <ul> <li>Convert parametric equations<br/>into Cartesian form by<br/>substitution.</li> <li>Convert parametric equations<br/>into Cartesian form using<br/>trigonometric identities.</li> <li>Understand and use<br/>parametric equations of<br/>curves and sketch parametric<br/>curves.</li> <li>Solve coordinate geometry<br/>problems involving<br/>parametric equations.</li> <li>Use parametric equations in<br/>modelling in a variety of<br/>contexts.</li> </ul> | • Coordinate                                                                                                                                 | from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson                          | Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie                  | Critical trinking in<br>contextual<br>problems.<br>Mathematical<br>reasoning.<br>Construction of<br>arguments.                           |
| ifferentiation – Week 3<br>How do w<br>differentia<br>more com<br>functions<br>equations | e apply9.1 Differentiating sinx and<br>cosxplex9.2 Differentiating exponentials<br>and logarithms.                      | <ul> <li>By the end of this topic, students should be able to</li> <li>Differentiate trigonometric functions.</li> <li>Differentiate exponentials and logarithms.</li> <li>Differentiate functions using the chain, product, and quotient rules.</li> <li>Differentiate parametric equations.</li> <li>Differentiate functions which are defined implicitly.</li> </ul>                                                                                                   | <ul> <li>Derivative</li> <li>Differentiate</li> <li>Gradient</li> <li>Chain Rule</li> <li>Product Rule</li> <li>Quotient<br/>Rule</li> </ul> | Unit 9 -<br>Exercises<br>from the<br>Year 2 Pure<br>Mathemati<br>cs<br>Textbook<br>and<br>Practice<br>Book by<br>Pearson | Mathsbo<br>x,<br>Pearson<br>Textbook<br>and<br>Practice<br>Book,<br>Mathsgen<br>ie | Modelling<br>relevance.<br>Critical thinking i<br>contextual<br>problems.<br>Mathematical<br>reasoning.<br>Construction of<br>arguments. |

| Term 4                                  |                          |                                                               | <ul> <li>Use the second derivate to describe the behaviour of a function.</li> <li>Solve problems involving connected rates of change and construct simple differential equations.</li> </ul> |   |                         |                         |                 |                               |
|-----------------------------------------|--------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------|-------------------------|-----------------|-------------------------------|
| Numerical Met                           | thods – Week 1-2 (1      | 9-20)                                                         |                                                                                                                                                                                               |   |                         | 1                       | 1               |                               |
|                                         | How can we               | 10.1 Locating Roots                                           | By the end of this topic, students                                                                                                                                                            | 0 | Roots                   | Unit 10 -               | Mathsbo         | Modelling relevance.          |
|                                         | approximate              | 10.2 Iteration                                                | should be able to                                                                                                                                                                             | 0 | Approximatio            | Exercises               | х,              | Critical thinking in          |
|                                         | solutions to             | 10.3 The Newton-Raphson                                       | <ul> <li>Locate roots of f(x)=0 by</li> </ul>                                                                                                                                                 |   | n<br>Itoration          | from the<br>Year 2 Pure | Pearson         | contextual<br>problems.       |
|                                         | equations in<br>context? | Method                                                        | <ul><li>considering changes of sign.</li><li>Use iteration to find an</li></ul>                                                                                                               | 0 | Iteration               | Mathemati               | Textbook<br>and | Mathematical                  |
| , i i i i i i i i i i i i i i i i i i i | context!                 | 10.4 Applications to modelling                                | <ul> <li>Use iteration to find an<br/>approximation to the root of</li> </ul>                                                                                                                 |   |                         | CS                      | Practice        | reasoning.<br>Construction of |
|                                         |                          |                                                               | the equation $f(x)=0$ .                                                                                                                                                                       |   |                         | Textbook                | Book,           | arguments.                    |
|                                         |                          |                                                               | <ul> <li>Use the Newton-Raphson</li> </ul>                                                                                                                                                    |   |                         | and                     | Mathsgen        |                               |
|                                         |                          |                                                               | procedure to find                                                                                                                                                                             |   |                         | Practice                | ie              |                               |
|                                         |                          |                                                               | approximations to the                                                                                                                                                                         |   |                         | Book by                 | _               |                               |
|                                         |                          |                                                               | solutions of the equations of                                                                                                                                                                 |   |                         | Pearson                 |                 |                               |
|                                         |                          |                                                               | the form f(x)=0.                                                                                                                                                                              |   |                         |                         |                 |                               |
|                                         |                          |                                                               | Use numerical methods to                                                                                                                                                                      |   |                         |                         |                 |                               |
|                                         |                          |                                                               | solve problems in context.                                                                                                                                                                    |   |                         |                         |                 |                               |
| Integration – V                         | Week 3-5 (20-24)         |                                                               |                                                                                                                                                                                               |   |                         |                         |                 |                               |
| H                                       | How can we               | 11.1 Integrating standard                                     | By the end of this topic, students                                                                                                                                                            | 0 | Integrate               | Unit 11 -               | Mathsbo         | Modelling relevance.          |
|                                         | approximate              | functions                                                     | should be able to                                                                                                                                                                             | 0 | Chain rule              | Exercises               | х,              | Critical thinking in          |
|                                         | solutions to             | 11.2 Integrating f(ax+b)                                      | Integrate standard                                                                                                                                                                            | 0 | Area                    | from the                | Pearson         | contextual<br>problems.       |
|                                         | equations in             | 11.3 Using trigonometric                                      | mathematical functions                                                                                                                                                                        | 0 | Differential            | Year 2 Pure             | Textbook        | Mathematical                  |
|                                         | context?                 | identities                                                    | including trigonometric and                                                                                                                                                                   |   | Equations<br>Identities | Mathemati               | and<br>Practice | reasoning.<br>Construction of |
|                                         |                          | 11.4 Reverse chain rule                                       | exponential functions and<br>use the reverse of the chain                                                                                                                                     | 0 | identities              | cs<br>Textbook          | Book,           | arguments.                    |
|                                         |                          | 11.5 Integration by substitution<br>11.6 Integration by parts | rule to integrate functions of                                                                                                                                                                |   |                         | and                     | Mathsgen        |                               |
|                                         |                          | 11.7 Partial fractions                                        | the form f(ax+b).                                                                                                                                                                             |   |                         | Practice                | ie              |                               |
|                                         |                          | 11.7 Partial fractions                                        |                                                                                                                                                                                               |   |                         |                         | _               |                               |
|                                         |                          | TT'O LIUGIUR greaz                                            |                                                                                                                                                                                               |   |                         |                         |                 |                               |

| 11.9 The trapezium rule         11.10 Solving differenti         equations         11.11 Modelling with         differential equations         11.12 Integration as the         a sum.         Vectors – Week 5-6 (24-25) (May roll over into term 5 if new                                                | <ul> <li>Use the reverse of the chain rule to integrate more complex functions.</li> <li>Integrate functions by makin a substitution, using integration by parts and usin partial fractions.</li> <li>Use integration to find the area under a curve.</li> <li>Use the trapezium rule to approximate the area under curve.</li> <li>Solve simple differential equations and model real life situations with differential equations.</li> </ul> | g                                                                                                           | Book by<br>Pearson                                                    |                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Vectors – week 3-6 (24-23) (way follower into term 3 in let vectors to model 3D movement?       12.1 3D Coordinates         3D movement?       12.3 Solving geometric problems         12.4 Application to med         12.4 Application to med         Term 5 – Revision in preparation for A-Level Exams. | By the end of this topic, students         should be able to         Understand 3D cartesian         coordinates.                                                                                                                                                                                                                                                                                                                              | <ul> <li>Acceleration</li> <li>Magnitude</li> <li>Direction</li> <li>Particle</li> <li>Resultant</li> </ul> | Unit 12 -<br>ExercisesMathsbo<br>x,From the<br>Year 2 PurePearson<br> | Modelling<br>relevance.<br>Critical thinking in<br>contextual<br>problems.<br>Mathematical<br>reasoning.<br>Construction of<br>arguments. |

| How do we           | During this term students will    | 0 | Resilience  | A-Level | Mathsbo  |  |
|---------------------|-----------------------------------|---|-------------|---------|----------|--|
| recognise and       | complete personalised revision    | 0 | Accuracy    | Maths   | х,       |  |
| correct gaps in our | programs, using a combination of  | 0 | Communicati | Exams   | Pearson  |  |
| understanding?      | past papers and review exercises  |   | on          |         | Textbook |  |
|                     | to identify areas of weakness,    | 0 | Persistence |         | and      |  |
|                     | along with practice exercises and | 0 | Drive       |         | Practice |  |
|                     | workshops to develop those        | 0 | Focus       |         | Book,    |  |
|                     | areas.                            |   |             |         | Mathsgen |  |
|                     |                                   |   |             |         | ie, Past |  |
|                     |                                   |   |             |         | Papers.  |  |